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Part I

Fundamentals





CHAPTER1

PHASORS

Phasors are a way of representing time varying signals as complex num-
bers in the frequency domain. That is, values in the form a+ bj where
j represents the imaginary number. Phasors, and complex numbers in
general can also be represented in polar form as A∠θ. One can imagine
the vector plotted on a plane where the horizontal axis represents the
real part of the complex number, variable a, and the vertical axis repre-
senting the imaginary part of the complex number, variable b. This in
turn would plot the vector A∠θ. as shown in figure 1.

Figure 1.1: Voltage phasor for 1 + 0 ∗ j in
complex form or 1∠0 in polar form

Figure 1.2: Voltage phasor for 1+1∗ j in
complex form or

√
2∠π4 in polar form

Figure 1.3: Voltage phasor for 0 + 1 ∗ j
in complex form or 1∠π2 in polar form

Figure 1.4: Voltage phasor for −1 + 0 ∗ j
in complex form or 1∠π in polar form

The length of the vector, represented by variable A, is called the
magnitude or modulus of the complex number and is often represented
by the same symbol used for taking the absolute value, for example
|a+ bj | = A. The angle of the vector, variable θ, is called the phase or
argument of the complex number. This is often represented by the
function arg or argument, for example arg(a+ bj) = θ.

A phasor is best understood conceptually when represented in polar
form.The magnitude of the phasor, A, represents the amplitude of the
wave, most often the peak value however it can also represent the RMS
value, though in this case the subscript rms is usually used to make this
explicit. The argument of the phasor, θ, represents the phase of the
signal at t = 0. However because, usually, the relative phase between
two signals wont change over time in the more general case the phase
can be seen as representing the relative phase to any other phasor in the
same circuit at any given time.

Figure 2 shows some examples of voltage phasors all at the same
frequency however with different magnitudes and phases.

Using phasors to represent AC circuits is called Frequency-Domain
Analysis. It allows us to analyze AC circuits in a way that looks sort
of like DC. This usually makes the math for phasors much simpler
than Time-Domain Analysis. However its important to understand
that values obtained are not instantaneous values as with Time-Domain
Analysis.

Another important point is the fact that the phasor itself, while rep-
resenting AC signal, it does not encode the frequency of the signal. The
frequency is added into the equations when calculating the impedance
of the components instead.





CHAPTER2

IMPEDANCE

Impedance represents the other piece of the puzzle for frequency-domain
analysis. Impedance is also a complex number that represents the opposi-
tion a circuit presents to the flow of current. Similar to how any network
of resistors can be reduced to a single resistor (thevenin’s equivalent)
a single impedance value can represent any combination of resistors,
inductors, and capacitors.

Impedance is defined as the complex ratio o the voltage phasor and
the crrnt phasor.

Z =
V
I

(2.0.1)

Impedance is a complex number, and like all complex numbers con-
sists of a real and an imaginary part in the form a+ bj. The real value
of impedance represents the resistance, this value comes from the re-
sistive components in the circuit being represented. The imaginary
value of impedance represents the reactance of the circuit. This value
comes from the inductors and capacitors in the circuit where capaci-
tors have negative values of reactance (called capacitive susceptance)
and inductors have positive values of reactance (called inductive reac-
tance). Consequently capacitors and inductors in series can partially
or completely cancel each other out at a specific frequency. However
because impedance values change with frequency a pair of inductor and
capacitor that would cancel out at one frequency might have significant
reactance at another frequency.





CHAPTER3

FUNDAMENTAL COMPONENTS

3.1 Resistor

The three basic components, resistors, inductors, and capacitors, can be
modeled by leveraging some definitions for impedance. Consider the
following examples where Z is complex impedance, L is inductance, C
is capacitance, and ω is the angular frequency.

Definition 3.1.1 — Instantaneous Current Through a Resistor (time-do-

main). Given a resistance, R, and an instantaneous voltage, V , then
the instantaneous current, I will be equal to the voltage divided by
the resistance:

I =
V
R

(3.1.1)

Definition 3.1.2 — Impedance of a Resistor. Given a resistance, R, the
complex impedance, Z, will be equal to the resistance:

Z = R+ 0j (3.1.2)

Z = R (3.1.3)

Definition 3.1.3 — Current Phasor Through a Resistor (frequency-do-

main). Given a resistance, R, and a complex voltage phasor, V , then
current, I , will be equal to the voltage divided by the resistance:

I =
V
R

(3.1.4)

3.2 Inductor
Definition 3.2.1 — Impedance of an Inductor. Given an inductance, L,
the complex impedance, Z, will be defined such that:

Z = 0 +Lωj

= Lωj
(3.2.1)

3.3 Capacitor

Definition 3.3.1 — Impedance of a Capacitor. Given a capacitance, C,
the complex impedance, Z, will be defined such that:

Z = 0 +−Cωj
= −Cωj

=
1

Cωj

(3.3.1)

To calculate the thevinin equivalent impedance for a series of compo-
nents simply add the impedances of each component together. Consider
the following examples where: Z is thevinin equivalent impedance, L is
inductance, C is capacitance, R is resistance, and ω is angular frequency.
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Exercise 3.1 What is the equation for the impedance of a resistor and
an inductor in series?

Z = R+Lωj (3.3.2)

�

Exercise 3.2 What is the equation for the impedance of a resistor, a
capacitor, and an inductor in series?

Z = R+Lωj +−Cωj

=
RωC +CLω2j − j

ωC

(3.3.3)

�



CHAPTER4

CIRCUIT LAWS

4.1 Ohm’s Law

Most of the circuit laws, such as ohm’s law and Kirchoff’s laws, map to
the frequency domain rather well. With Ohms law for example one can
substitute Impedance (Z) in place of Resistance (R), voltage phasors for
DC voltage, and current phasors for DC current. By doing this you will
receive valid results in complex form. Problem (8) for example was just
an application of ohm’s law in the frequency domain. From Ohm’s law
we have the following.

Definition 4.1.1 — Ohm’s Law. Given a complex voltage phasor, V ,
and a complex current phasor, I , the complex impedance, Z, will be
defined such that:

Z =
V
I

(4.1.1)

Similarly the magnitude of the impedance will be the ratio of the
magnitudes of the voltage impedance to the current impedance.

|Z | = |V |
|I |

(4.1.2)

It also follows that the phase of the impedance represents the phase
difference between the voltage across the component and the current
through it.

arg(Z) = arg(V )− arg(I) (4.1.3)

The consequence of this is that because a resistor has a purely real
impedance the phase of its complex impedance will always be 0. This
means the voltage across a resistor will always be in phase with the
current through it. Similarly because inductors and capacitors have
a purely imaginary impedance its phase will always be 90 degrees or
π
2 radians ahead or behind. This means purely reactive components
like inductors and capacitors will always see the voltage across them
as 90 degrees out of phase with the current through them. Whether
the phase shift is ahead 90 degrees or behind 90 degrees depends on if
the reactance is positive or negative (In other words it is opposite for
inductors and capacitors).

4.2 Joule’s Law

However Joule’s Law (often taught as part of Ohm’s law) is somewhat
different as you must use the conjugate of the current phasor.

Definition 4.2.1 — Joule’s Law. Given a complex voltage phasor, V ,
and a complex current phasor, I , the complex power, S, will be
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defined such that:

S =
1
2
V I (4.2.1a)

S = Vrms Irms (4.2.1b)

4.3 Kirchoff’s Current Law

4.4 Kirchoff’s Voltage Law



Part II

Passive Circuits





CHAPTER5

RC CIRCUITS

5.1 RC Low-pass Filter

We will begin with one of the simplest circuits you can model in the
frequency domain, an RC Low-pass Filter. The purpose of this circuit
is to act as a low-pass filter, which means that higher frequencies are
attenuated to a greater extent than lower frequencies. In layman’s terms
it selectively allows lower frequencies to pass but not higher frequencies.
What we will see is that as the frequency approaches DC then the voltage
phasor at Vout will begin to match the phasor at Vin. Similarly as the
frequency approaches infinity Vout will approach 0.

Vin VoutIin

R C

Figure 5.1: RC Low-pass Filter
Schematic

Using Ohm’s law we know that the voltage across the entire circuit
will equal the current through it multiplied by its impedance. Since
impedance is treated much like resistance we simply add the impedance
of the resistor and capacitor to get the thevenin equivalent impedance
of the circuit then multiply that by Iin.

Vin = Iin(ZR +ZC) (5.1.1)

We can therefore solve for Iin and arrive at the function defining the
current through the circuit.

Iin =
Vin

ZR +ZC
(5.1.2)

Now that we know Vin and Iin we can calculate Vout . We know from
Ohm’s law that the current through the capacitor multiplied by the
impedance of the capacitor will give us the voltage across the capacitor,
which is Vout .

Vout = Iin ZC (5.1.3)

Next we expand our impedances with the component values.

ZC =
−j
ωC

(5.1.4)

ZR = R (5.1.5)

Using substitution on equation (5.1.1) from earlier and then solving
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for Iin we have the following.

Vin = Iin(R+
−j
ωC

)

Vin
Iin

=
Iin(R+ −j

ωC )
Iin

Vin
Iin

=�
�ZZIin(R+ −j

ωC )

��ZZIin
Vin
Iin

= R+
−j
ωC

Iin
Vin

=
1

R+ −j
ωC

Iin
Vin

Vin =
1

R+ −j
ωC

Vin

Iin

��ZZVin
��ZZVin =

Vin

R+ −j
ωC

Iin =
Vin

R+ −j
ωC

(5.1.6)

Lets put the equation in complex form so it is easier to work with.

Iin =
VinωC

(R+ −j
ωC )ωC

=
VinωC

RωC + −j
ωCωC

=
VinωC

RωC + −j
��HHωC�
�HHωC

=
VinωC
RωC − j

=
VinωC(RωC + j)

(RωC − j)(RωC + j)

=
VinRω

2C2 +VinωCj
R2ω2C2 + 1

=
VinRω

2C2

R2ω2C2 + 1
+

VinωC

R2ω2C2 + 1
j

(5.1.7)
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Similarly we can use substitution on equation (5.1.3) from earlier.

Vout =
Vin

R+ −j
ωC

−j
ωC

=
−Vinj

(R+ −j
ωC )ωC

=
−Vinj

RωC + −j
ωCωC

=
−Vinj

RωC + −j
��HHωC�
�HHωC

=
−Vinj
RωC − j

=
(−Vinj)(RωC + j)

(RωC − j)(RωC + j)

=
Vin −VinRωCj
R2ω2C2 + 1

=
Vin

R2ω2C2 + 1
− VinRωC

R2ω2C2 + 1
j

(5.1.8)

Figure 5.2: Frequency response graph
for a RC circuit.

Figure 5.3: Multiple frequency re-
sponse graphs for various RC circuits.

Now that we have some equations to model the circuit lets try graph-
ing a few values to get a better understanding of how the circuit behaves.
First lets graph Vout as a function of the frequency of the signal with a
constant value of 1 for both C and R. Of course, since Vout is a complex
number we had to graph the amplitude and phase components of Vout
separately.

We can also overlay several similar graphs to illustrate how the circuit
behaves for different values of R.

Exercise 5.1 Given the circuit in figure 5.1 where Vin is a sinusodial
signal with a peak voltage of 12 volts, and an angular frequency of
100π. In addition the resistor, R, has a value of 10 Ohms, and the
capacitor, C, has a capacitance of 2 Farads. What is the peak voltage
of the signal at Vout?

Using equation (5.1.8) for calculating Vout we have:

Vout =
Vin

R2ω2C2 + 1
− VinRωC

R2ω2C2 + 1
j

=
(12 + 0j)

(10)2(100π)2(2)2 + 1
−

(12 + 0j)(10)(100π)2
(10)2(100π)2(2)2 + 1

j

=
12

4000000π2 + 1
− 24000π

4000000π2 + 1
j

(5.1.9)

�

5.2 RC High-pass Filter
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RLC CIRCUITS

6.1 Resonance

Since we know the circuit’s resonant frequency is where the circuit at-
tenuates the signal to a minimum we can easily calculate it. In other
words the impedance of the circuit will be at a minimum at the reso-
nant frequency. This occurs because for any value of capacitance and
inductance there will be some frequency where the two impedances
will be equal and opposite, thus they will cancel each other out leaving
only the resistor. Therefore we can calculate the resonant frequency by
calculating the point where the impedances are equal but opposite.

−ZC = ZL (6.1.1)
j

λC
= λLj (6.1.2)

λ = ± 1
√
LC

(6.1.3)

But since L and C will always be positive values what we really wind
up is just the positive version.

R The resonant frequency, λ,
is represented as an angular
frequency in radians.

Definition 6.1.1 — Resonant Frequency of an LC Circuit. Given an in-
ductance, L, and a capacitance, C, the resonant frequency, λ will be
as follows:

λ =
1
√
LC

(6.1.4)

6.2 RLC Band-pass Filter

Vin
VoutIin

L C R

Figure 6.1: RLC Bandpass Filter
Schematic

We will now apply the same principles we used in the last demonstration
to a slightly more complicated demonstration of a RLC band-pass filter.
A band-pass filter is a type of filter that allows frequencies to pass at
specific frequency, called the resonant frequency, but will attenuate
frequencies both above and below the resonant frequency. Figure 4
illustrates one configuration producing an RLC band-pass filter.

We know, due to Ohm’s Law, that the voltage across the circuit will
be equal to the current through the circuit multiplied by the thevenin
equivalent impedance of the circuit. Furthermore we know that the
thevenin equivalent impedance of the circuit will simply be the sum of
the impedance of our three components. We will use this equation to
arrive at a function defining the current through the circuit.

Vin = Iin(ZL +ZR +ZC) (6.2.1)

Solving for Iin we get

Iin =
Vin

ZL +ZR +ZC
(6.2.2)
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Next we can calculate Vout using Ohm’s law again. We know that
the voltage across the resistor will be equal to the current through it
multiplied by its impedance.

Vout = IinZR (6.2.3)

We now expand the impedance values with our specific component
values.

ZL =ωLj (6.2.4)

ZC =
−j
ωC

(6.2.5)

ZR = R (6.2.6)

Vin = Iin ∗ (ωLj +
−j
ωC

+R) (6.2.7)

Next we solve for Iin and arrive at the following.

Iin =
VinωC

RωC + jω2LC − j
(6.2.8)

We can also substitute our equation for Iin into our equation for Vout
arriving at a function for Vout that is independent of Iin.

Vout =
VinωC

RωC + jω2LC − j
R

=
VinωCR

RωC + jω2LC − j

(6.2.9)

Figure 6.2: Frequency response graph
for a RLC circuit.

Figure 6.3: Multiple frequency re-
sponse graphs for various RLC circuits.

Now that we have some equations to model the circuit lets try graph-
ing a few values to get a better understanding of how the circuit behaves.
First lets graph Vout as a function of the frequency of the signal with a
constant value of 1 for C, L, and R. Of course, since Vout is a complex
number we had to graph the amplitude and phase components of Vout
separately.

We can also overlay several similar graphs to illustrate how the circuit
behaves for different values of R.
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TRANSMISSION LINES

7.1 Transmission Line Reflections

ZS ZL
Z0

Vf

Vr

Figure 7.1: Reflections in a Transmis-
sion Line.

In this demonstration we will approach some simple concepts in model-
ing a transmission line. A transmission line is a long length of wire used
to carry an AC signal. While very short lengths of wire will not show
any significant effects, longer wires approaching the wavelength of the
signal will begin to exhibit more significant effects. The other property
of a transmission line, other than the length, needed for many equations
is called the characteristic impedance (usually labeled as Z0). The char-
acteristic impedance represents the impedance the transmission line
would exhibit if it were infinitely long. The value of the characteristic
impedance is always a purely resistive value.

Typically a transmission line is terminated with an impedance on
both sides of the line, and the transmission line itself represents a pair
of wires, not a single wire, both carrying current in opposite directions.
If a transmission line system is properly matched the source impedance,
characteristic impedance, and load impedance will all have the same
values. When the system is matched any waves generated at the source
end will pass into the transmission line and then finally be dissipated
in the load without any of the signal being reflected back towards the
source. However if there is any mismatch between the impedances there
will be reflections generated at the point where the mismatch occurs. In
most cases only a portion of the wave is reflected; in fact the impedance
needs to be either 0 or infinite in order to create a complete reflection.
In addition depending on the complex impedances at the junction the
reflection may also have its phase shifted.

Figure 7.1 shows a transmission line system showing a forward volt-
age phasor as well as the reverse voltage phasor, the reflection when the
system is mismatched.

At the junction between any mismatched portions of the transmis-
sion line system we can calculate a complex value called a Reflection
coefficient. The reflection coefficient defines what portion of incoming
waves get reflected and to what extent it’s phase will shift as a result.
The reflection coefficient will have a magnitude between 0 and 1 where
0 represents no reflections and 1 indicates waves will be fully reflected.

The reflection coefficient can be defined either in terms of the impedances
at the junction, or the ratio of the reverse voltage phasor to the forward
voltage phasor.

Definition 7.1.1 — Reflection Coefficient from Impedance. Given a load
impedance, ZL, and a transmission line’s characteristic impedance,
Z0, the reflection coefficient, Γ can be calculated as follows:

Γ =
ZL −Z0

ZL +Z0
(7.1.1)

R SWR and Γ are both dimen-
sionless values, as well as ra-
tios. As such these values do
not have a unit specification.

Definition 7.1.2 — Reflection Coefficient from Voltage Phasors. Alter-
natively, given a forward voltage phasor, Vf , and a reverse voltage
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phasor, Vr , the reflection coefficient, Γ , can be calculated as follows:

Γ =
Vr
Vf

(7.1.2)

Furthermore the standing wave ratio, SWR, induced int he transmis-
sion line can be calculated from the reflection coefficient.

Definition 7.1.3— StandingWave Ratio from Reflection Coefficient. Given
a reflection coefficient, Γ , the standing wave ratio, SWR, can be cal-
culated as follows:

SWR = −|Γ |+ 1
|Γ | − 1

(7.1.3)

Figure 7.2: SWR plotted for a trans-
mission line with a fixed characteris-
tic impedance of 50 ohms with varying
load impedances.

Next we can plot the SWR to show how it is effected by various values
for the load impedance. Figure 7.2 shows how the SWR will vary given a
fixed characteristic impedance on the transmission line but with various
values for the load impedance. Notice when the system is matched at
Z0 = ZL = 50 that the SWR is at a minimum of 1.

7.2 Impedance Transformation of a Transmission Line

Z
in

Z
0

Z
L

l

Figure 7.3: Transmission line as a trans-
formation of a load impedance.

Given a length of feed line terminated by an impedance we can calcu-
late the impedance on the far end of the transmission line given the
following:

Zin = Z0
ZL + tan(βl)Z0j

Z0 + tan(βl)ZLj
(7.2.1)

β is defined as follows:

β =
2π
λ

(7.2.2)

Where λ is the wavelength in the transmission line, defined as:

λ =
c
f

(7.2.3)

Where f is the frequency in hertz, therefore to get the angular fre-
quency, ω, we have:

λ =
2πc
ω

(7.2.4)

Finally c can be defined from the transmission line’s velocity factor,
VF, as follows:

R The velocity factor, VF, is al-
ways a value between 0 and
1.

c = VF ·C (7.2.5)

Bringing it all together and we can now define our final equation.

Definition 7.2.1 — Impedance Transformation of a Transmission Line.

Given a load impedance, ZL, and the characteristic impedance of the
transmission line, Z0, and the length of the transmission line, l, and
the speed of propagation through the transmission line, c, and the
angular frequency of the signal, γ , then the transformed impedance
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at Zin is defined as follows:

Zin = Z0
ZL + tan(ωc l)Z0j

Z0 + tan(ωc l)ZLj
(7.2.6)

Figure 7.4: Transformed load
impedance for various lengths of
the transmission line.

Figure 7.5: Transformed load
impedance for various lengths of
the transmission line.

Figure 7.6: Transformed load
impedance for various lengths of
the transmission line.

We can now graph Zin to illustrate the effects of various lengths of a
transmission line. Figure 7.4 shows how the impedance is transformed
for various lengths of transmission line with a characteristic impedance
of 50 ohms and a load impedance of 400 ohms. Similarly figure 7.5 shows
how the impedance is transformed for various lengths of transmission
line with a characteristic impedance of 50 ohms and a load impedance
of 10 ohms. Finally figure 7.6 shows the impedance transformation
plots for an assortment of load impedances. In all of these plots the
axis representing length is scaled such that a value of 1 represents a
transmission line that is equal in length to the wavelength of the signal
propagating through it. Furthermore all of these graphs use the angular
frequency of 60,000π.

It is interesting to note that starting at one-eigth of a wavelength, and
repeated every quarter of a wavelength after, the transformed impedance
of the load will always match the characteristic impedance of the trans-
mission line. So at these length intervals the system will appear to be
matched. Of course this only holds true so long as the frequency remains
constant.

At every half of a wavelength no transformation takes place at all,
Zin will just equal ZL. This point is closely related to the node in a
standing wave. The transmission line forms a standing wave due to
reflections forming at the mismatched end, and this length corresponds
to the position in the transmission line where a node would form in
the standing wave. Similarly starting at a quarter of a wavelength and
repeated every half of a wavelength there after the transformation is
most exaggerated. At these points Zin will have the largest difference in
impedance with ZL. These points are associated with the anti-nodes of
the standing wave formed in the transmission line.

7.3 Lumped Impedance of a Transmission Line with Load

Z
in

Z
L

Z∝

ßZ

Transmission Line

Figure 7.7: Transmission line as a
lumped impedance.

One thing that can be useful is to reduce the transmission line itself to
equivalent lumped impedances as shown in figure 7.7. The catch here is
that once we actually calculate the functions for the lumped components
for the transmission line we find that their values are not only dependant
on the characteristic impedance and length of the transmission line but
they are also a function of the frequency and the load impedance. This
is a particularly useful technique when analyzing the complex power of
circuits involving a transmission line as well as applying circuit laws in
general.

We will begin with the equation from the last demonstration depict-
ing Zin for a transmission line as shown in the previous section.
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TRANSFORMERS

8.1 Transformer Coupled Circuit

I1

M

L1 L2

R1 R2

I2

Figure 8.1: Transformer based circuit
schematic.

Transformers are modeled similar to inductors however there are some
unique consequences of the fact that their magnetic flux overlap and
thus some of their inductance is mutual, labeled M in Figure 8.1. In
order to model a transformer we must insert 2 virtual inductors, one in
series with L1 the other in series with L2. However the virtual inductor
is modeled such that its voltage is the inverse of the mutual impedance
multiplied by the current through the coil on the opposite side of the
transformer. In other words the virtual inductor added in series to L1
would have the voltage −ZMI2 and the virtual inductor added in series
to L2 would have the voltage −ZMI1.

The first step is calculating the mutual inductance of the coils in the
inductor. Usually the coupling coefficient is supplied, k, which is a value
between 0 and 1, with 1 representing a perfectly coupled transformer.
M is calculated as follows:

M = k
√
L1L2 (8.1.1)

To calculate the impedance representing the mutual inductance of
the transformer:

ZM =ωMj (8.1.2)

To calculate the impedance of inductor L1 or L2:

ZL =ωLj (8.1.3)

Since we have two separate meshes (circuit loops) we will produce
two separate simultaneous equations for each mesh and then use substi-
tution. Since the sum of the voltage drops around a mesh will always
be 0, we use this to construct our two simultaneous equations. The
first equation is the sum of the voltage drops around the first mesh,
including our virtual inductor representing the mutual inductance of
the transformer.

0 = −V +VR1 +VL1 −VM1 (8.1.4)

Substitute in Ohm’s Law for voltage

0 = −V + (ZR1I1) + (ZL1I1)− (ZMI2) (8.1.5)

Substitute values for impedance.

0 = −V + (R1I1) + ((ωL1j)I1)− ((ωMj)I2)

= −V +R1I1 +ωL1I1j −ωMI2j
(8.1.6)
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Now we repeat the same process for mesh 2.

0 = −V + (ZR2I2) + (ZL2I2)− (ZMI1)

= −V + (R2I2) + ((ωL2j)I2)− ((ωMj)I1)

= −V +R2I2 +ωL2I2j −ωMI1j
(8.1.7)

This leaves us with two simultaneous equations. We can therefore
solve for I in either equation and use substitution to arrive at two inde-
pendent equations. Therefore the next step is to solve for I1 in equation
8.1.6.

I1 =
V +ωMI2j
R1 +ωL1j

(8.1.8)

Now we substitute the value of I1 into equation 8.1.7 to arrive at the
independent equation for mesh 2.

0 = −V +R2I2 +ωL2I2j −ωM(
V +ωMI2j
R1 +ωL1j

)j (8.1.9)

Solving for I2 we get the following equation.

I2 =
ωMV j

R1R2 +ωL1R2j +ωR1L2j −L1L2ω2 +ω2M2 (8.1.10)

Likewise we substitute the value for I2 from the previous equation
into equation 8.1.8 to arrive at the independent equation for mesh 1.

I1 =
V +ωM( ωMV j

R1R2+ωL1R2j+ωR1L2j−L1L2ω2+ω2M2 )j

R1 +ωL1j
(8.1.11)

=
V (R1R2 +ωL1R2j +ωR1L2j −L1L2ω

2)
(R1R2 +ωL1R2j +ωR1L2j −L1L2ω2 +ω2M2)(R1 +ωL1j)

(8.1.12)

8.2 Impedance Transformation of a Transformer
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IMPEDANCE MATCHING NETWORKS

9.1 L Network Conjugate Matching
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Figure 9.1: An L Conjugate Match
Tuner.
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Figure 9.2: An L Conjugate Match
Tuner forward looking impedance.
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Figure 9.3: An L Conjugate Match
Tuner reverse looking impedance.

The goal of an L Network is to convert an impedance at the load to match
some desired impedance. But in this demonstration we are specifically
interested in an L Network which produces a conjugate match, the
purpose of which is essentially that of a tuner. In other words the
impedance looking towards the load will match the source impedance,
and the impedance looking towards the source will equal the Complex
Conjugate of the load impedance. This will allow any waves moving
forward to travel normally while all waves traveling in reverse to be
reflected back towards the load. This ensures more of the power reaches
the load rather than being dissipated in the source.

First lets calculate the thevenin equivalent impedance for Zf . To do
that we first sum Zγ and ZL because these two elements are in series.
We then take the reciprocal of that value and sum it with the recipricol
of Zβ since those elements are in parallel with eachother; this will give
us Zf .

Zf =
1

Zγ +ZL
+

1
Zβ

(9.1.1)

Similarly lets calculate the thevenin equivelant impedance for Zr . In
this case we will want to sum the recipricols of Zβ and ZS , then sum that
value with the impedance for Zγ to arrive at Zr .

Zr =
1
ZS

+
1
Zβ

+Zγ (9.1.2)

As stated earlier we want Zf to be equal to ZS . Therefore we can take
equation 9.1.1 and substitute in ZS for Zf .

ZS =
1

Zγ +ZL
+

1
Zβ

(9.1.3)

Similarly we want Zr to be the conjugate of ZL. Therefore we can
take equation 9.1.2 and substitute in the conjugate of ZL.

ZL =
1
ZS

+
1
Zβ

+Zγ (9.1.4)

Since we now have two simultanious equations, as well as two un-
known impedances, we can use substitution and arrive at two indepen-
dent equations. First lets take equation 9.1.3 and solve for Zβ .
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ZS =
1

Zγ +ZL
+

1
Zβ

ZS−
1
Zβ

=
1

Zγ +ZL
+

1
Zβ
− 1
Zβ

ZS −
1
Zβ

=
1

Zγ +ZL�
�
�S
S
S

+
1
Zβ �

�
�S
S
S

− 1
Zβ

ZS−
1
Zβ

=
1

Zγ +ZL

− 1
Zβ

+ZS =
1

Zγ +ZL

− 1
Zβ

+ZS−ZS =
1

Zγ +ZL
−ZS

− 1
Zβ
�
��HHH+ZS��HH−ZS =

1
Zγ +ZL

−ZS

− 1
Zβ

=
1

Zγ +ZL
−ZS

− 1
Zβ

(−1) = (
1

Zγ +ZL
−ZS )(−1)

�Z−
1
Zβ
�
��HHH(−1) = (

1
Zγ +ZL

−ZS )(−1)

1
Zβ

=
−1

Zγ +ZL
+ZS

1
Zβ

=
−1

Zγ +ZL
+
ZS(Zγ +ZL)

(Zγ +ZL)

1
Zβ

=
−1

Zγ +ZL
+
ZγZS +ZLZS
Zγ +ZL

1
Zβ

=
ZγZS +ZLZS−1

Zγ +ZL

(
1
Zβ

)
(−1)

= (
ZγZS +ZLZS − 1

Zγ +ZL
)
(−1)

Zβ =
Zγ +ZL

ZγZS +ZLZS − 1
(9.1.5)

Similarly we will now solve for Zγ in equation 9.1.4.
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ZL =
1
ZS

+
1
Zβ

+Zγ

ZL−Zγ =
1
ZS

+
1
Zβ

+Zγ−Zγ

ZL−Zγ =
1
ZS

+
1
Zβ�

��HHH+Zγ���HHH−Zγ

−Zγ +ZL =
1
ZS

+
1
Zβ

−Zγ +ZL−ZL =
1
ZS

+
1
Zβ
−ZL

−Zγ�
�Z
Z+ZL�
�Z
Z−ZL =

1
ZS

+
1
Zβ
−ZL

−Zγ =
1
ZS

+
1
Zβ
−ZL

(−Zγ )(−1) = (
1
ZS

+
1
Zβ
−ZL)(−1)

(�Z−Zγ )���HHH(−1) = (
1
ZS

+
1
Zβ
−ZL)(−1)

Zγ =
−1
ZS
− 1
Zβ

+ZL (9.1.6)

The final step is substitution, so now we will substitute Zγ from
equation 9.1.6 into equation 9.1.5.

Zβ =
Zγ +ZL

ZγZS +ZLZS − 1

=
( −1
ZS
− 1
Zβ

+ZL) +ZL

( −1
ZS
− 1
Zβ

+ZL)ZS +ZLZS − 1

=

−1
ZS
− 1
Zβ

+ZL +ZL
−ZS
ZS
− ZSZβ +ZLZS +ZLZS − 1

=

−1
ZS
− 1
Zβ

+ZL +ZL
−��ZZZS
��ZZZS
− ZSZβ +ZLZS +ZLZS − 1

=

−1
ZS
− 1
Zβ

+ZL +ZL

−1−ZSZβ +ZLZS +ZLZS−1

=

−1
ZS
− 1
Zβ

+ZL +ZL
−ZS
Zβ

+ZLZS +ZLZS−1− 1

=

−1
ZS
− 1
Zβ

+ZL +ZL
−ZS
Zβ

+ZLZS +ZLZS−2

We know that a complex number added to its conjugate will give you
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twice the real part only. Therefore we can simplify things a bit further.

Zβ =

−1
ZS
− 1
Zβ

+ZL +ZL
−ZS
Zβ

+ZLZS +ZLZS − 2

=

−1
ZS
− 1
Zβ

+ 2<(ZL)

−ZS
Zβ

+ZLZS +ZLZS − 2

=

−1
ZS
− 1
Zβ

+ 2<(ZL)

−ZS
Zβ

+ZLZS+ZLZS − 2

=

−1
ZS
− 1
Zβ

+ 2<(ZL)

−ZS
Zβ

+ (ZL +ZL)ZS − 2

=

−1
ZS
− 1
Zβ

+ 2<(ZL)

−ZS
Zβ

+ 2<(ZL)ZS − 2

Of course we still need to solve for Zβ , the first step in doing that is
to get rid of the fractions.

Zβ =
( −1
ZS
− 1
Zβ

+ 2<(ZL))Zβ

(−ZSZβ + 2<(ZL)ZS − 2)Zβ

Zβ =
( −1
ZS
− 1
Zβ

+ 2<(ZL))Zβ

(−ZSZβ + 2<(ZL)ZS − 2)Zβ

Zβ =

−Zβ
ZS
− ZβZβ + 2<(ZL)Zβ

−ZSZβ
Zβ

+ 2<(ZL)ZSZβ − 2Zβ

Zβ =

−Zβ
ZS
−��@@Zβ
��@@Zβ

+ 2<(ZL)Zβ

−ZS��@@Zβ

��@@Zβ
+ 2<(ZL)ZSZβ − 2Zβ

Zβ =

−Zβ
ZS
− 1 + 2<(ZL)Zβ

−ZS + 2<(ZL)ZSZβ − 2Zβ

Zβ(−ZS+2<(ZL)ZSZβ−2Zβ)=
(
−Zβ
ZS
−1+2<(ZL)Zβ )(−ZS+2<(ZL)ZSZβ−2Zβ )

−ZS+2<(ZL)ZSZβ−2Zβ

Zβ (−ZS+2<(ZL)ZSZβ−2Zβ )=
(
−Zβ
ZS
−1+2<(ZL)Zβ )

((((
((((hhhhhhhh

(−ZS+2<(ZL)ZSZβ−2Zβ )

((((
((((hhhhhhhh

−ZS+2<(ZL)ZSZβ−2Zβ

Zβ(−ZS + 2<(ZL)ZSZβ − 2Zβ) =
−Zβ
ZS
− 1 + 2<(ZL)Zβ

Now lets do some simplification and gather all the terms on the right
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hand side of the equation.

Zβ(−ZS + 2<(ZL)ZSZβ − 2Zβ) =
−Zβ
ZS
− 1 + 2<(ZL)Zβ

−ZSZβ + 2<(ZL)ZSZβZβ − 2ZβZβ =
−Zβ
ZS
− 1 + 2<(ZL)Zβ

−ZSZβ + 2<(ZL)ZSZβ
2 − 2Zβ

2 =
−Zβ
ZS
−1 + 2<(ZL)Zβ

−ZSZβ + 2<(ZL)ZSZβ
2 − 2Zβ

2 =
−Zβ
ZS

+ 2<(ZL)Zβ−1

(−ZSZβ+2<(ZL)ZSZβ
2−2Zβ

2)−(−ZSZβ+2<(ZL)ZSZβ
2−2Zβ2)=(

−Zβ
ZS

+2<(ZL)Zβ−1)−(−ZSZβ+2<(ZL)ZSZβ
2−2Zβ2)

(((
((((

(((hhhhhhhhhh
(−ZSZβ+2<(ZL)ZSZβ

2−2Zβ
2)
(((

((((
(((hhhhhhhhhh

−(−ZSZβ+2<(ZL)ZSZβ
2−2Zβ

2)=(
−Zβ
ZS

+2<(ZL)Zβ−1)−(−ZSZβ+2<(ZL)ZSZβ
2−2Zβ

2)

0=(
−Zβ
ZS

+2<(ZL)Zβ−1)−(−ZSZβ+2<(ZL)ZSZβ
2−2Zβ

2)

The next step in solving for Zβ is to get the equation into polynomial
form of 0 = aZβ2 + bZβ + c.

0 = (
−Zβ
ZS

+ 2<(ZL)Zβ − 1) − (−ZSZβ + 2<(ZL)ZSZβ
2 − 2Zβ

2)

0 =
−1
ZS
Zβ + 2<(ZL)Zβ − 1 + ZSZβ − 2<(ZL)ZSZβ

2 + 2Zβ
2

0 =
−1
ZS
Zβ + 2<(ZL)Zβ − 1 +ZSZβ − 2<(ZL)ZSZβ

2 + 2Zβ
2

0 =
−1
ZS
Zβ + 2<(ZL)Zβ − 1 +ZSZβ − 2<(ZL)ZSZβ

2 + 2Zβ
2

0 = −2<(ZL)ZSZβ
2 + 2Zβ

2 +
−1
ZS
Zβ + 2<(ZL)Zβ +ZSZβ − 1

0 = −2<(ZL)ZSZβ
2 + 2Zβ

2 +
−1
ZS
Zβ + 2<(ZL)Zβ +ZSZβ − 1

0 = −2<(ZL)ZSZβ
2 + 2Zβ

2 +
−1
ZS
Zβ + 2<(ZL)Zβ +ZSZβ − 1

0 = (−2<(ZL)ZS + 2)Zβ
2 + (
−1
ZS

+ 2<(ZL) +ZS )Zβ − 1

Next we can use the quadratic equation to solve for Zβ , the quadratic
equation takes a polynomial in the form of 0 = ax2 + bx + c into the form
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x = −b±
√
b2−4ac
2a .

Zβ =
−( −1

ZS
+ 2<(ZL) +ZS )±

√
( −1
ZS

+2<(ZL)+ZS )
2−4(−2<(ZL)ZS+2)(−1)

2(−2<(ZL)ZS + 2)

=
1
ZS
− 2<(ZL)−ZS ±

√
( −1
ZS

+ 2<(ZL) +ZS )
2 − 8<(ZL)ZS+8

−4<(ZL)ZS + 4

=
1
ZS
− 2<(ZL)−ZS ±

√
( −1
ZS

+ 2<(ZL) +ZS )
2 − 8<(ZL)ZS + 8

−4<(ZL)ZS + 4

=

1
ZS
− 2<(ZL)−ZS ±

√
( −1
ZS

+2<(ZL)+ZS )( −1
ZS

+2<(ZL)+ZS )−8<(ZL)ZS+8

−4<(ZL)ZS + 4

=

1
ZS
− 2<(ZL)−ZS ±

√
ZS

2+4<(ZL)2− 3<(ZL)
ZS

+ 1
ZS

2 +4<(ZL)ZS−2−8<(ZL)ZS+8

−4<(ZL)ZS + 4

=

1
ZS
− 2<(ZL)−ZS ±

√
ZS

2+4<(ZL)2− 3<(ZL)
ZS

+ 1
ZS

2 +4<(ZL)ZS−2−8<(ZL)ZS+8

−4<(ZL)ZS + 4

=

1
ZS
− 2<(ZL)−ZS ±

√
ZS

2+4<(ZL)2− 3<(ZL)
ZS

+ 1
ZS
−2 −4<(ZL)ZS+6

−4<(ZL)ZS + 4

Being unable to simplify the equation further we have now success-
fuly solved for the impedance of the Zβ component.

Theorem 9.1.1 Given the L network in figure 9.1 in order to produce
a conjugate match it must follow that:

Zβ =

1
ZS
− 2<(ZL)−ZS ±

√
ZS

2+4<(ZL)2− 3<(ZL)
ZS

+ 1
ZS

2 −4<(ZL)ZS+6

−4<(ZL)ZS + 4

Similarly we will also substitute Zβ from equation 9.1.5 into equation
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9.1.6 in order to solve for Zγ .

Zγ =
−1
ZS
− 1
Zβ

+ZL

Zγ =
−1
ZS
− 1

Zγ+ZL
ZγZS+ZLZS−1

+ZL

Zγ =
−1
ZS
−
ZγZS +ZLZS − 1

Zγ +ZL
+ZL

Zγ =
−1(Zγ +ZL)

ZS(Zγ +ZL)
−
ZS(ZγZS +ZLZS − 1)

ZS(Zγ +ZL)
+
ZLZS(Zγ +ZL)

ZS(Zγ +ZL)

Zγ =
−1(Zγ +ZL)

ZS (Zγ +ZL)
−
ZS (ZγZS +ZLZS − 1)

ZS (Zγ +ZL)
+
ZLZS (Zγ +ZL)

ZS (Zγ +ZL)

Zγ =
−Zγ−ZL

ZγZS +ZLZS
−
ZγZSZS +ZLZSZS −ZS

ZγZS +ZLZS
+
ZγZLZS +ZLZLZS
ZγZS +ZLZS

Zγ =
(−Zγ −ZL) − (ZγZSZS +ZLZSZS −ZS ) + (ZγZLZS +ZLZLZS )

ZγZS +ZLZS

Zγ =
−Zγ −ZL − ZγZS2 − ZLZS2 + ZS +ZγZLZS +ZLZLZS

ZγZS +ZLZS

Since we know a complex number multiplied by its conjugate yields
the real part squared plus the imaginary part squared we can further
simplify the equation.

Zγ =
−Zγ −ZL −ZγZS2 −ZLZS2 +ZS +ZγZLZS +ZLZLZS

ZγZS +ZLZS

Zγ =
−Zγ −ZL −ZγZS2 −ZLZS2 +ZS +ZγZLZS + (<(ZL)2 +=(ZL)2)ZS

ZγZS +ZLZS

Zγ =
−Zγ −ZL −ZγZS2 −ZLZS2 +ZS +ZγZLZS +<(ZL)2ZS +=(ZL)2ZS

ZγZS +ZLZS

Now we will cross multiple to get rid of the fractions.

−Zγ−ZL−ZγZS2−ZLZS2+ZS+ZγZLZS+<(ZL)2ZS+=(ZL)2ZS

ZγZS+ZLZS
= Zγ

−Zγ−ZL−ZγZS2−ZLZS2+ZS+ZγZLZS+<(ZL)2ZS+=(ZL)2ZS=Zγ (ZγZS+ZLZS )

−Zγ−ZL−ZγZS2−ZLZS2+ZS+ZγZLZS+<(ZL)2ZS+=(ZL)2ZS=ZγZγZS+ZγZLZS

−Zγ−ZL−ZγZS2−ZLZS2+ZS+ZγZLZS+<(ZL)2ZS+=(ZL)2ZS=Zγ 2ZS+ZγZLZS

Next we will gather all the terms on the right side of the equation
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and simplify.

0=−Zγ−ZL−ZγZS2−ZLZS2+ZS+ZγZLZS+<(ZL)2ZS+=(ZL)2ZS − (Zγ 2ZS+ZγZLZS)

=−Zγ−ZL−ZγZS2−ZLZS2+ZS+ZγZLZS+<(ZL)2ZS+=(ZL)2ZS−Zγ 2ZS−ZγZLZS

=−Zγ−ZL−ZγZS2−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS−Zγ 2ZS−ZγZLZS+ZγZLZS

=−Zγ−ZL−ZγZS2−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS−Zγ 2ZS−ZγZLZS+ZγZLZS

=−Zγ−ZL−ZγZS2−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS−Zγ 2ZS+(−ZL+ZL)ZγZS

=−Zγ−ZL−ZγZS2−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS−Zγ 2ZS+(2<(ZL)−2ZL)ZγZS

=−Zγ−ZL−ZγZS2−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS−Zγ 2ZS+2<(ZL)ZγZS−2ZLZγZS

If we want to solve for Zγ we must now get the equations into
quadratic form so we can apply the quadratic equation.

0=−Zγ−ZL−ZγZS2−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS−Zγ 2ZS+2<(ZL)ZγZS−2ZLZγZS

=−Zγ−ZL−ZS2Zγ−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS−ZSZγ 2+2<(ZL)ZSZγ−2ZLZSZγ

=−Zγ−ZL−ZS2Zγ−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS−ZSZγ 2+2<(ZL)ZSZγ−2ZLZSZγ

=−Zγ−ZL−ZS2Zγ−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS−ZSZγ 2+2<(ZL)ZSZγ−2ZLZSZγ

=−ZSZγ 2−Zγ−ZS2Zγ+2<(ZL)ZSZγ−2ZLZSZγ−ZL−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS

=−ZSZγ 2−Zγ−ZS2Zγ+2<(ZL)ZSZγ−2ZLZSZγ−ZL−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS

=−ZSZγ 2−Zγ−ZS2Zγ+2<(ZL)ZSZγ−2ZLZSZγ−ZL−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS

=(−ZS )Zγ 2+(−1−ZS2+2<(ZL)ZS−2ZLZS )Zγ+(−ZL−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS)

Finally we can apply the quadratic equation to solve for Zγ .

Zγ= −(−1−ZS2+2<(ZL)ZS−2ZLZS )±
√

(−1−ZS2+2<(ZL)ZS−2ZLZS )2−4(−ZS )(−ZL−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS )
2(−ZS )

= −(−1−ZS2+2<(ZL)ZS−2ZLZS )±
√

(−1−ZS2+2<(ZL)ZS−2ZLZS )2−4(−ZS )(−ZL−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS )
2(−ZS )

= 1+ZS
2−2<(ZL)ZS+2ZLZS±

√
(−1−ZS2+2<(ZL)ZS−2ZLZS )2+4ZS (−ZL−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS )

−2ZS

= ZS
2−2<(ZL)ZS+2ZLZS+1±

√
(−1−ZS2+2<(ZL)ZS−2ZLZS )2+4ZS (−ZL−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS )

−2ZS

= ZS
2−2<(ZL)ZS+2ZLZS+1±

√
(−1−ZS2+2<(ZL)ZS−2ZLZS )2+4ZS (−ZL−ZLZS2+ZS+<(ZL)2ZS+=(ZL)2ZS )

−2ZS

= ZS
2−2<(ZL)ZS+2ZLZS+1±

√
(−1−ZS2+2<(ZL)ZS−2ZLZS )2−4ZLZS−4ZLZS

3+4ZS
2+4<(ZL)2ZS

2+4=(ZL)2ZS
2

−2ZS

= ZS
2−2<(ZL)ZS+2ZLZS+1±

√
ZS

4−4<(ZL)ZS
3+(8<(ZL)2−8<(ZL)ZL+4ZL2+4=(ZL)2+6)ZS

2−4<(ZL)ZS+1
−2ZS



CHAPTER10

RF TRANSMISSION SYSTEMS

10.1 Transmission Line, Balun, & Antenna
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Figure 10.1: Transmission line, balun,
and antenna system.

Z
LZ

U
Z
B

ZM

XU : XB

Figure 10.2: Balun and antenna portion
of the system.

In this demonstration we combine some of the basic concepts we already
covered in a more complex example. Here we show an AC voltage
source with source impedance ZS connected to a transmission line of
characteristic impedance of Z0. The transmission line is then terminated
with a balun, modeled as a transformer, and then an antenna with
impedance ZL.

The best way to approach the problem is to start at the load and find
the thevenin equivalent impedance of each section, reducing it one piece
at a time. We start by looking at the balun and antenna segment and
finding the thevenin equivalent of this portion as seen in figure 12.

As in the past the first step is to define the mutual inductance.
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